

T&E of Network Centric Warfare Systems --

A Lesson in Systems Engineering Discipline

23 October 2002

Bob Ogden
Raytheon St. Petersburg, FL
727.302.7505
Robert_J_Ogden@raytheon.com

Raytheon

Outline

- Brief CEC Intro
- Road to CEC OPEVAL T&E Lessons Learned
- System Engineering Processes
- Next Step Larger nets, FOT&E

Cooperative Engagement Capabilities

REVOLUTIONARY NEW CAPABILITY

- Not a New Sensor or Weapon System
- Distributes & Combines Sensor & Weapons Data from Existing Systems

SENSOR COOPERATION

Resulting in...
Single Track Picture
with Consistent ID

DATA DISTRIBUTION

SIGNIFICANT BENEFITS

- Track Accuracy, Continuity, & ID Consistency
- Identical Picture, Track Numbers on All Units
- Reduced Reaction, Extended Engagement Ranges

COOPERATIVE ENGAGEMENT

Precision Cue

Allows Acquisition Near Horizon

CUED ENGAGE

CEC EXPANDS THE BATTLESPACE

CEC Warfighting Benefits

Detection and Tracking

- Composite picture formed by combining all Battle Group sensor measurement data
 - Tracking accuracy/target discrimination superior to any single sensor
- Quantum improvement in track and identification continuity
- Remote sensor cueing extends force detection ranges
- Expands capability of existing sensors and weapons

Engagement

- Earlier track formation resulting in increased time for combat system to react
- Significant increases in depth of fire; higher P_k
- Enables self defense systems to maximize performance against stressing targets
- Engagement of targets not held by ownship sensors
- Improved ability in jamming environments

CEC Equipment Configurations In OPEVAL

Network testing will always involve a mixture of systems

- 3 Different Equipment Configurations For OPEVAL
 - AN/USG-1: Add'l Node Known Limitations
 - AN/USG-2: System Under Evaluation
 - AN/USG-3: Add'l Node FOT&E item

Road to CEC OPEVAL

- Lessons Learned -

- Operational Evaluation "raised the bar" in accountability
 - Previous CEC tests primarily proof-of-concept demonstrations or limited scope events
 - "It" worked before, IKEBG had deployed with CEC
- All host combat systems and CEC brought new computer programs for the OPEVAL test evolution
 - Independent testing with simulation test requires extensive fidelity to minimize risk at onset of live testing
- No individual agency understood the magnitude of OPEVAL
 - Stovepipe integration strategies and organizational structures (technical/programmatic) were not effective for battle force integration
- Battle Group interoperability implications were grossly underestimated - TADIL/Host/CEC interaction

Getting Things Stabilized

- Established collaborative data analysis practices with all programs represented
 - Analysis Control Board, Data Analysis Working Group
 - Data collection required extreme measures of discipline
- High priority problems identified for correction of system stability issues
 - OPEVAL Change Control Board, Individual program CCBs
- Integration solutions developed and cooperatively fielded
 - Functional Teams, Senior Systems Engineering Council

Steady state operations allowed testing to resume

The Road to Recovery

- System-of-Systems evaluation methodology defined
 - CEC ORD revisited
 - CEC Collaborative Analysis Process defined Critical Technical Issues - MOEs, KPPs, etc.
- A measurable, progressive test strategy developed
 - Test Control Board, Scenario Working Group
 - TADIL interoperability isolation tests established perspectives
- Centralized control at a level to influence all programs was critical
 - PEO-TSC Interoperability Task Force established
 - Program Managers Advisory Council
 - Senior Advisory Group
 - Operations Advisory Group

CTI Framework

Making Progress

- Measurable progress was achieved
 - Test strategy and evaluation criteria were set
 - Baseline performance evaluated
 - Practical test, evaluate, fix, verify, retest time cycles defined
 - Improvements integrated with ever tightening configuration control
 - Measurements were retaken
 - Test complexity increased
- Entrance and exit criteria were established for each event
- Periodic comprehensive performance reviews
- System performance maturity enabled operational training and proficiency

Systematically and progressively verified required performance

Performance Verification Complexity

Operationally Effective & Suitable

- Systematic engineering process clearly defined expectations and limitations
 - No surprises!!!
- Key performance parameters demonstrated system value
- Operational evaluators participated in engineering testing
 - System under test was well characterized as were the components that comprised the system-of-systems
- Introduction of System of Systems capabilities like CEC is an evolutionary process - FOT&E

Systems engineering discipline is paramount to success

A System of Systems Success Story The Road to CEC OPEVAL

Affordable Growth Concepts

- Operational network centric warfare testing is very costly
- Distributed Engineering Plant (DEP) leverages land-based assets
- Capacity testing can only be accomplished via simulation/stimulation
- Operational testing and training must continue at the fighting integer level
 - For a network system the fighting integer becomes the Battle Force
 - Annual fleet and joint events minimize cost/disruption and maximize operational realism (JCIET, Roving Sands, COMPTUEX, JTFEX)
- Engineering practices must ensure performance cornerstones are retained as networked systems become more diverse

System engineering discipline must be flexible

Distributed Engineering Plant (DEP)

- FY 01 -

F-14D

PT Mugu

AEGIS CGs/DDGs ATRC

DEP Operations Center NAVSEA Dahlgren

AAW FOCUSED

Battle Group LINK Monitor
NCTSI

E-2C GII SSC - San Diego SIF

CV/CVN Class LHA/LHD Class ICSTF - San Diego

U.S Army PAC-3 Huntsville

AEGIS CGs/DDGs NSWCDD - ACC

AEGIS CGs/DDGs

SCSC, Wallops Island

C4ISR SSC-Charleston / SD

D-30 Process Overview

INITIAL BASELINE REVIEW Initial Baseline Configuration Defined BASELINE REVIEW BOARD Final Baseline Configuration Promulgated D-24 PLATFORM CERTIFICATION Begins D-18 BATTLE FORCE
INTEGRATION
TESTING
(BFIT)
Distributed
Engineering
Plant Testing

PRELIMINARY
BATTLE GROUP
CERTIFICATION
Baseline
Hardware/Software
Install/Preliminary
Certify

D-7

FINAL
BATTLE GROUP
CERTIFICATION
Final Baseline
Hardware/Software
Certification
D-1

FLEET CINCs
Battle Group
Composition

Initial Baselin
Configuratio
Defined
D-28

Established D-30

ELECTRONIC CHANGE CONTROL BOARD (eCCB)

CONFIGURATION PLANNING GROUP (CPG)

D-24 to D-0

D-12

Battle Group Centric

"CARDINAL RULES"

- NOTHING GOES ONBOARD WITHOUT GOING THRU DEP TESTING
- NOTHING GOES ONBOARD AFTER PRE-DEPLOY AT SEA EXERCISE (COMPTUEX/JTFEX)

The Solution to System of Systems Success

Systems
Engineering
& Management

At
All
Levels

